Archives: Astrobiology Magazine

Just like the mythical creation stories that depict the formation of the world as the story of order from chaos, the early Earth was home to a chaotic clutter of organic molecules from which, somehow, more complex biological structures such as RNA and DNA emerged.

One of the major issues when studying ore deposits formed in surficial or near-surface environments is the relationship between ore-forming processes and bacteria. At a first glance, these environments appear to be a preferred place for the growth of microbial ecosystems because they potentially have large amounts of nutrients. However, studies have been restricted because of the low likelihood of microbe fossilization and because biomarkers are not always definitive.

The strange orbits of some objects in the farthest reaches of our solar system, hypothesised by some astronomers to be shaped by an unknown ninth planet, can instead be explained by the combined gravitational force of small objects orbiting the Sun beyond Neptune, say researchers.

Using new data from NASA’s Cassini spacecraft, researchers believe they have solved a longstanding mystery of solar system science: the length of a day on Saturn. It’s 10 hours, 33 minutes and 38 seconds.

Humankind’s exploration of space has for years pondered one central question: Is there another world somewhere in the universe where human beings could survive?

Around 4 billion years ago there lived a microbe called LUCA: the Last Universal Common Ancestor. There is evidence that it could have lived a somewhat ‘alien’ lifestyle, hidden away deep underground in iron-sulfur rich hydrothermal vents. Anaerobic and autotrophic, it didn’t breathe air and made its own food from the dark, metal-rich environment around it. Its metabolism depended upon hydrogen, carbon dioxide and nitrogen, turning them into organic compounds such as ammonia. Most remarkable of all, this little microbe was the beginning of a long lineage that encapsulates all life on Earth.

Researchers have found revolutionary evidence that an evolutionary phenomenon at work in complex organisms is at play in their single-celled, extreme-loving counterparts, too.

Mars and Earth are like two siblings who have grown apart.

The reflected light from vegetation, particularly on older, hotter planets, could give away the existence of life elsewhere in the Universe, new research from scientists at the Carl Sagan Institute at Cornell University have shown.

Resonating oscillations of a planet’s atmosphere caused by gravitational tides and heating from its star could prevent a planet’s rotation from steadily slowing over time, according to new research by Caleb Scharf, who is the Director of Astrobiology at Columbia University. His findings suggest that the effect is enhanced for a planet with an atmosphere that has been oxygenated by life, and the resulting ‘atmospheric tides’ could even act as a biosignature.